adaptOp

Projektbeschreibung

Uncertainties

In dynamic production systems, uncertainties occur frequently and, in addition, change over time. For instance, when looking at operating personnel, not only does the expertise among individual operators vary, it also happens that collectively among shifts the policies that each shift agrees upon differ. Moreover, a change in policy can cause further deviations.

Disruptive Events

There are many examples of unforeseen events which require counter-measures. Some of these events might have severe consequences, for instance failing to clear a continuous caster in time could cause the whole casting process to stop, which is a very expensive scenario

Limited Time

Time to react is short, but still good decisions need to be made. Additionally, available time also varies. A timely uncritical situation might quickly turn into a stressful scenario, for instance when a few disruptive events follow each other.

Dynamic Problems

We identify and formulate new dynamic optimization problems. Simulation models are developed that provide virtual environments as testbeds for adaptive optimization methods. These virtual environments provide challenging control problems for even the most state of the art methods. Uncertainty plays an essential role, as effective optimization approaches have to deal with disruptive events. We also introduce new benchmarks that provide promising grounds for optimization research.

Adaptive Methods

Dynamic production environments are characterized by continuous change. We develop new methods that react on these changes while solving hard optimization problems. These methods are executed in sync with the real world and perpetually adapt to the current conditions. In expectation of change events, adaptive optimization predicts and prepares for possible future outcomes.

Integrated Machine Learning

Human operators do not perceive the world in snapshots of data, but rather learn how it evolves and how it transforms. We develop models to describe changes and dependencies in dynamic production systems. By integrating machine learning into adaptive optimization methods, we create solvers that continuously learn, predict possible events and proactively prepare for different scenarios in the future.

Bei Fragen kontaktieren Sie uns jederzeit.

Kontakt

Weitere Projekte

Hybrid Algorithms for Redesigning MRP

Laufzeit: 10/2020 - 09/2023

The overall aim of this project is to develop efficient modeling and solution approaches to overcome all of these drawbacks and to provide (close to) optimal mid-term production plans.

X-PRO

Laufzeit: 01/2020 - 12/2024

Erforschung und Entwicklung benutzer-zentrierter Methoden für Cross-Virtuality Analytics von Produktionsdaten

adaptOp

Laufzeit: 10/2019 - 09/2024

Innerhalb von JRC adaptOp werden wir mit der Lösung dynamischer Optimierungsprobleme in Bereichen wie Lagerhaltung, Produktion und Transport konfrontiert. Es wird ein Framework adaptiver Methoden entwickelt, mit dem wir schnell auf beobachtete Veränderungen in der Umgebung reagieren. Techniken des maschinellen Lernens werden integriert, um das Auftreten zukünftiger Ereignisse vorherzusagen, mögliche zukünftige Szenarien zu entwerfen und geeignete Optimierungsalgorithmen auszuwählen und zu konfigurieren.

Smart Factory Lab

Laufzeit: 01/2016 - 07/2021

Ziel des Projekts Smart Factory Lab ist der Aufbau eines standortübergreifenden vernetzten Technologie-Labors zur Entwicklung und Erprobung innovativer Technologien, Methoden und Konzepte für Intelligente Produktion entlang des Produktlebenszyklus. Am Institut für Intelligente Produktion der FH OÖ liegt der Fokus auf den Forschungsthemen Preemptive Maintenance inklusive der Einbindung von Mixed Reality Technologien in den Instandhaltungsprozess und Generative Fertigung mittels Pulverdüsenverfahren und damit in Verbindung stehende neue Geschäftsmodelle.